\qquad
\qquad

DIRECT VARIATION

- Recall that direct variation is a \qquad function of the form $y=$ \qquad , where k is the nonzero constant of variation.

For each function, determine whether y varies directly with x. If so, find the constant of variation and write the equation.
1.

x	-1	1	3
y	-3	3	9

2.

x	1	2	3
y	1	4	9

3.

x	-2	2	5
y	-1	1	2.5

In each exercise, y varies directly with x. Find the missing value.
4. If $y=3$ when $x=2$, find x when $y=5$.
5. If $y=-4$ when $x=\frac{1}{2}$, find y when $x=\frac{2}{3}$.
6. If $y=-14$ when $x=-7$, find x when $y=22$.

INVERSE VARIATION

- A function of the form $y=$ \qquad or $x y=k$, where $k \neq 0$.

Suppose that x and y vary inversely. Write a function that models each inverse variation.
7. $(3,-5)$
8. $(0.3,1.4)$
9. $(7,4)$

Is the relationship between the variables in each table a direct variation, an inverse variation, or neither? Write functions to model the direct and inverse variations.
10.

x	0.5	2	6
y	1.5	6	18

11.

x	0.2	0.6	1.2
y	12	4	2

12.

x	1	2	3
y	2	1	0.5

COMBINED VARIATION

- Combines direct and inverse variations in more complicated relationships

Examples of Combined Variations

Combined Variation	Equations Form
y varies directly with the square of x	
y varies inversely with the cube of x	
z varies jointly with x and y	
z varies jointly with x and y and inversely with w	
z varies directly with x and inversely with the product of w and y	

Write the function that models each relationship. Find z when $x=4$ and $y=9$.
13. z varies directly with x and inversely with y. When $x=6$ and $y=2, z=15$.
14. z varies jointly with x and y. When $x=2$ and $y=3, z=60$.
15. z varies directly with the square of x and inversely with y. When $x=2$ and $y=4$, $z=3$.
16. z varies inversely with the product of x and y. When $x=2$ and $y=4, z=0.5$.

